#
PyTorch-Quickstart
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
#
Working with data
- PyTorch has two primitives to work with data:
torch.utils.data.DataLoader
andtorch.utils.data.Dataset
. Dataset stores the samples and their corresponding labels, andDataLoader
wraps an iterable around theDataset
.
# Downloads dataset and automatically transforms and scales data
train_data = datasets.FashionMNIST(root="data", train=True, download=True, transform=ToTensor())
test_data = datasets.FashionMNIST(root="data", train=False, download=True, transform=ToTensor())
- We pass the
Dataset
to aDataLoader
. This wraps the iterable over the dataset and supports automatic batching, sampling, shuffling and multiprocess data loading. Each element in this iterable will be of the given batch size.
batch_size = 64
train_dl = DataLoader(train_data, batch_size=batch_size)
test_dl = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dl:
print(f"Shape of X [N, C, H, W]: {X.shape}")
print(f"Shape of y: {y.shape} {y.dtype}")
break
Shape of X [N, C, H, W]: torch.Size([64, 1, 28, 28])
Shape of y: torch.Size([64]) torch.int64
#
Creating & training models
- We use
nn.Module
to create a NN. Layers are defined in the__init__
fn and the process of data passage through the network is defined in theforward
fn.
device = (
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
print(f"Using {device} device")
Using cuda device
class NeuralNetwork(nn.Module):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512), # Takes in & out size
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
model
NeuralNetwork(
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear_relu_stack): Sequential(
(0): Linear(in_features=784, out_features=512, bias=True)
(1): ReLU()
(2): Linear(in_features=512, out_features=512, bias=True)
(3): ReLU()
(4): Linear(in_features=512, out_features=10, bias=True)
)
)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset)
model.train()
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 100 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dl, model, loss_fn, optimizer)
test(test_dl, model, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.300023 [ 64/60000]
loss: 2.282963 [ 6464/60000]
loss: 2.259477 [12864/60000]
loss: 2.255992 [19264/60000]
loss: 2.246285 [25664/60000]
loss: 2.212793 [32064/60000]
loss: 2.218766 [38464/60000]
loss: 2.177712 [44864/60000]
loss: 2.179352 [51264/60000]
loss: 2.145025 [57664/60000]
Test Error:
Accuracy: 45.6%, Avg loss: 2.136228
Epoch 2
-------------------------------
loss: 2.152839 [ 64/60000]
loss: 2.132048 [ 6464/60000]
loss: 2.064191 [12864/60000]
loss: 2.095134 [19264/60000]
loss: 2.041862 [25664/60000]
loss: 1.972970 [32064/60000]
loss: 2.008766 [38464/60000]
loss: 1.911095 [44864/60000]
loss: 1.924729 [51264/60000]
loss: 1.860631 [57664/60000]
Test Error:
Accuracy: 54.6%, Avg loss: 1.849374
Epoch 3
-------------------------------
loss: 1.887922 [ 64/60000]
loss: 1.845952 [ 6464/60000]
loss: 1.717600 [12864/60000]
loss: 1.783016 [19264/60000]
loss: 1.672628 [25664/60000]
loss: 1.619707 [32064/60000]
loss: 1.655750 [38464/60000]
loss: 1.541622 [44864/60000]
loss: 1.580325 [51264/60000]
loss: 1.482737 [57664/60000]
Test Error:
Accuracy: 62.3%, Avg loss: 1.491978
Epoch 4
-------------------------------
loss: 1.564908 [ 64/60000]
loss: 1.522284 [ 6464/60000]
loss: 1.362493 [12864/60000]
loss: 1.452010 [19264/60000]
loss: 1.341246 [25664/60000]
loss: 1.330601 [32064/60000]
loss: 1.354728 [38464/60000]
loss: 1.270351 [44864/60000]
loss: 1.313188 [51264/60000]
loss: 1.217961 [57664/60000]
Test Error:
Accuracy: 64.3%, Avg loss: 1.238418
Epoch 5
-------------------------------
loss: 1.317977 [ 64/60000]
loss: 1.295236 [ 6464/60000]
loss: 1.120098 [12864/60000]
loss: 1.234601 [19264/60000]
loss: 1.122686 [25664/60000]
loss: 1.140069 [32064/60000]
loss: 1.165707 [38464/60000]
loss: 1.098476 [44864/60000]
loss: 1.143580 [51264/60000]
loss: 1.057847 [57664/60000]
Test Error:
Accuracy: 65.2%, Avg loss: 1.077951
Done!
#
Saving and loading models
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
Saved PyTorch Model State to model.pth
model = NeuralNetwork().to(device)
model.load_state_dict(torch.load("model.pth"))
<All keys matched successfully>
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
x = x.to(device)
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')
Predicted: "Ankle boot", Actual: "Ankle boot"